Latest News

Introduction to Classless Routing - Module 23

  

                                                   
                                                   Module Overview  






  
  
23.1 VLSM   
23.1.1 What is VLSM and why is it used?
23.1.2 A waste of space
23.1.3 When to use VLSM
23.1.4 Calculating subnets with VLSM
23.1.5 Route aggregation with VLSM 
23.1.6 Configuring VLSM

23.2 RIP Version 2
23.2.1 RIP history 
23.2.2 RIP v2 features
23.2.3 Comparing RIP v1 and v2
23.2.4 Configuring RIP v2
23.2.5 Verifying RIP v2
23.2.6 Troubleshooting RIP v2
23.2.7 Default routes
 
  
 Summary

Overview

 
 
Network administrators must anticipate and manage the physical growth of networks. This may require them to buy or lease another floor of a building for new network equipment such as racks, patch panels, switches, and routers. Network designers must choose address schemes that allow for growth. Variable-length subnet mask (VLSM) is used to create efficient and scalable address schemes.

Almost every enterprise must implement an IP address scheme. Many organizations select TCP/IP as the only routed protocol to run on their networks. Unfortunately, the architects of TCP/IP did not predict that the protocol would eventually sustain a global network of information, commerce, and entertainment.

IPv4 offered an address strategy that was scalable for a time before it resulted in an inefficient allocation of addresses. IPv4 may soon be replaced with IP version 6 (IPv6) as the dominant protocol of the Internet. IPv6 has virtually unlimited address space and implementation has begun in some networks. Over the past two decades, engineers have successfully modified IPv4 so that it can survive the exponential growth of the Internet. VLSM is one of the modifications that has helped to bridge the gap between IPv4 and IPv6.

Networks must be scalable since the needs of users evolve. When a network is scalable it is able to grow in a logical, efficient, and cost-effective way. The routing protocol used in a network helps determine the scalability of the network. It is important to choose the routing protocol wisely. Routing Information Protocol version 1 (RIP v1) is suitable for small networks. However, it is not scalable to large networks. RIP version 2 (RIP v2) was developed to overcome these limitations.

This module covers some of the objectives for the CCNA 640-801 and ICND 640-811 exams.  

Students who complete this module should be able to perform the following tasks:

  • Define VLSM and briefly describe the reasons for its use
  • Divide a major network into subnets of different sizes using VLSM
  • Define route aggregation and summarization as they relate to VLSM
  • Configure a router using VLSM
  • Identify the key features of RIP v1 and RIP v2
  • Identify the important differences between RIP v1 and RIP v2
  • Configure RIP v2
  • Verify and troubleshoot RIP v2 operation
  • Configure default routes using the ip route and ip default-network commands   1.1  VLSM


23.1 VLSM 
23.1.1  What is VLSM and why is it used?   
 
As IP subnets have grown, administrators have looked for ways to use their address space more efficiently. This page introduces a technique called VLSM. With VLSM, a network administrator can use a long mask on networks with few hosts, and a short mask on subnets with many hosts.  -

In order to implement VLSM, a network administrator must use a routing protocol that supports it. Cisco routers support VLSM with Open Shortest Path First (OSPF), Integrated IS-IS, Enhanced Interior Gateway Routing Protocol (EIGRP), RIP v2, and static routing.

VLSM allows an organization to use more than one subnet mask within the same network address space. VLSM implementation maximizes address efficiency, and is often referred to as subnetting a subnet.

Classful routing protocols require that a single network use the same subnet mask. As an example, a network with an address of 192.168.187.0 can use just one subnet mask, such as 255.255.255.0.

A routing protocol that allows VLSM gives the network administrator freedom to use different subnet masks for networks within a single autonomous system.   Figure  shows an example of how a network administrator can use a 30-bit mask for network connections, a 24-bit mask for user networks, and even a 22-bit mask for networks with up to 1000 users.



  23.1  VLSM 
  23.1.2  A waste of space  
 
This page will explain how certain address schemes can waste address space.

In the past, the first and last subnet were not supposed to be used. The use of the first subnet, which was known as subnet zero, was discouraged because of the confusion that could occur if a network and a subnet had the same address. This also applied to the use of the last subnet, which was known as the all-ones subnet. With the evolution of network technologies and IP address depletion, the use of the first and last subnets have become an acceptable practice in conjunction with VLSM.

In Figure , the network management team has borrowed three bits from the host portion of the Class C address that has been selected for this address scheme.

If the team decides to use subnet zero, there will be eight useable subnets. Each subnet can support 30 hosts. If the team decides to use the no ip subnet-zero command, there will be seven usable subnets with 30 hosts in each subnet. Cisco routers with Cisco IOS version 12.0 or later, use subnet zero by default.

In Figure , the Sydney, Brisbane, Perth, and Melbourne remote offices may each have 30 hosts. The team realizes that it has to address the three point-to-point WAN links between Sydney, Brisbane, Perth, and Melbourne. If the team uses the last three subnets for the WAN links, all of the available addresses will be used and there will be no room for growth. The team will also have wasted the 28 host addresses from each subnet to simply address three point-to-point networks. This address scheme would waste one-third of the potential address space.

Such an address scheme is fine for a small LAN. However, it is extremely wasteful if point-to-point connections are used.


  23.1  VLSM 
  23.1.3  When to use VLSM   
 
It is important to design an address scheme that allows for growth and does not waste addresses. This page examines how VLSM can be used to prevent the waste of addresses on point-to-point links.

As shown in Figure , the network management team has decided to avoid the wasteful use of the /27 mask on the point-to-point links. The team applies VLSM to the address problem.

To apply VLSM to the address problem, the team breaks the Class C address into subnets of variable sizes. Large subnets are created for LANs. Very small subnets are created for WAN links and other special cases. A 30-bit mask is used to create subnets with only two valid host addresses. This is the best solution for the point-to-point connections. The team will take one of the three subnets they previously decided to assign to the WAN links, and subnet it again with a 30-bit mask.

In the example, the team has taken one of the last three subnets, subnet 6, and subnetted it again. This time the team uses a 30-bit mask. Figures  and  illustrate that after using VLSM, the team has eight ranges of addresses to be used for the point-to-point links.



   23.1  VLSM
  23.1.4  Calculating subnets with VLSM  
 
VLSM helps to manage IP addresses. This page will explain how to use VLSM to set subnet masks that fit the link or segment requirements. A subnet mask should satisfy the requirements of a LAN with one subnet mask and the requirements of a point-to-point WAN with another.

The example in Figure  shows a network that requires an address scheme.

The example contains a Class B address of 172.16.0.0 and two LANs that require at least 250 hosts each. If the routers use a classful routing protocol, the WAN link must be a subnet of the same Class B network. Classful routing protocols such as RIP v1, IGRP, and EGP do not support VLSM. Without VLSM, the WAN link would need the same subnet mask as the LAN segments. A 24-bit mask of 255.255.255.0 can support 250 hosts.  

The WAN link only needs two addresses, one for each router. That means that 252 addresses would be wasted.

If VLSM was used, a 24-bit mask would still be applied on the LAN segments for the 250 hosts. A 30-bit mask could be used for the WAN link because only two host addresses are needed.

Figure  shows where the subnet addresses can be applied based on the number of host requirements. The WAN links use subnet addresses with a prefix of /30. This prefix allows for only two host addresses which is just enough for a point-to-point connection between a pair of routers.

In Figure , the subnet addresses used are generated when the 172.16.32.0/20 subnet is divided into /26 subnets.

To calculate the subnet addresses used on the WAN links, further subnet one of the unused /26 subnets. In this example, 172.16.33.0/26 is further subnetted with a prefix of /30. This provides four more subnet bits and therefore 16 (24) subnets for the WANs. Figure  illustrates how to work through a VLSM system.

VLSM can be used to subnet an already subnetted address. For example, consider the subnet address 172.16.32.0/20 and a network that needs ten host addresses. With this subnet address, there are 212 – 2, or 4094 host addresses, most of which will be wasted. With VLSM it is possible to subnet 172.16.32.0/20 to create more network addresses with fewer hosts per network. When 172.16.32.0/20 is subnetted to 172.16.32.0/26, there is a gain of 26, or 64 subnets. Each subnet can support 26 – 2, or 62 hosts.

Use the following steps to apply VLSM to 172.16.32.0/20:

  1. Write 172.16.32.0 in binary form.
  2. Draw a vertical line between the 20th and 21st bits, as shown in Figure . The original subnet boundary was /20.
  3. Draw a vertical line between the 26th and 27th bits, as shown in Figure . The original /20 subnet boundary is extended six bits to the right, which becomes /26.
  4. Calculate the 64 subnet addresses with the bits between the two vertical lines, from lowest to highest in value. The figure shows the first five subnets available.

It is important to remember that only unused subnets can be further subnetted. If any address from a subnet is used, that subnet cannot be further subnetted. In Figure , four subnet numbers are used on the LANs. The unused 172.16.33.0/26 subnet is further subnetted for use on the WAN links.


 23.1  VLSM 
 23.1.5  Route aggregation with VLSM 
 
 
This page will explain the benefits of route aggregation with VLSM.

When VLSM is used, it is important to keep the subnetwork numbers grouped together in the network to allow for aggregation. For example, networks like 172.16.14.0 and 172.16.15.0 should be near one another so that the routers only carry a route for 172.16.14.0/23.

The use of classless interdomain routing (CIDR) and VLSM prevents address waste and promotes route aggregation, or summarization. Without route summarization, Internet backbone routing would likely have collapsed sometime before 1997.

Figure  illustrates how route summarization reduces the burden on upstream routers. This complex hierarchy of variable-sized networks and subnetworks is summarized at various points with a prefix address, until the entire network is advertised as a single aggregate route of 200.199.48.0/20. Route summarization, or supernetting, is only possible if the routers of a network use a classless routing protocol, such as OSPF or EIGRP. Classless routing protocols carry a prefix that consists of a 32-bit IP address and bit mask in the routing updates. In Figure , the summary route that eventually reaches the provider contains a 20-bit prefix common to all of the addresses in the organization. That address is 200.199.48.0/22 or 11001000.11000111.0011. For summarization to work, addresses should be carefully assigned in a hierarchical fashion so that summarized addresses will share the same high-order bits.

The following are important rules to remember:

  • A router must know in detail the subnet numbers attached to it.
  • A router does not need to inform other routers about each subnet if the router can send one aggregate route for a set of routes.
  • A router that uses aggregate routes has fewer entries in its routing table.
VLSM increases route summarization flexibility because it uses the higher-order bits shared on the left, even if the networks are not contiguous.

Figure  shows that the addresses share the first 20 bits. These bits are colored red. The 21st bit is not the same for all the routes. Therefore the prefix for the summary route will be 20 bits long. This is used to calculate the network number of the summary route.

Figure  shows that the addresses share the first 21 bits. These bits are colored red. The 22nd bit is not the same for all the routes. Therefore the prefix for the summary route will be 21 bits long. This is used to calculate the network number of the summary route.


   23.1  VLSM 
  23.1.6  Configuring VLSM   
 
This page will teach students how to calculate and configure VLSM. If VLSM is the scheme chosen, it must then be calculated and configured correctly.

The following are VLSM calculations for the LAN connections in Figure :

  • Network address: 192.168.10.0
  • The Perth router has to support 60 hosts. That means a minimum of six bits are needed in the host portion of the address. Six bits will yield 26 – 2, or 62 possible host addresses. The LAN connection for the Perth router is assigned the 192.168.10.0/26 subnet.
  • The Sydney and Singapore routers have to support 12 hosts each. That means a minimum of four bits are needed in the host portion of the address. Four bits will yield 24 – 2, or 14 possible host addresses. The LAN connection for the Sydney router is assigned the 192.168.10.96/28 subnet and the LAN connection for the Singapore router is assigned the 192.168.10.112/28 subnet.
  • The KL router has to support 28 hosts. That means a minimum of five bits are needed in the host portion of the address. Five bits will yield 25 – 2, or 30 possible host addresses. The LAN connection for the KL router is assigned the 192.168.10.64/27 subnet.
The following are VLSM calculations for the point-to-point connections in Figure :

  • Perth to KL
The connection from Perth to KL requires only two host addresses. That means a minimum of two bits are needed in the host portion of the address. Two bits will yield 22 – 2, or 2 possible host addresses. The Perth to KL connection is assigned the 192.168.10.128/30 subnet.

  • Sydney to KL
The connection from Sydney to KL requires only two host addresses. That means a minimum of two bits are needed in the host portion of the address. Two bits will yield 22 – 2, or 2 possible host addresses. The Sydney to KL connection is assigned the 192.168.10.132/30 subnet.

  • Singapore to KL
The connection from Singapore to KL requires only two host addresses. That means a minimum of two bits are needed in the host portion of the address. Two bits will yield 22 – 2, or 2 possible host addresses. The Singapore to KL connection is assigned the 192.168.10.136/30 subnet.

The following configuration is for the Singapore to KL point-to-point connection:

Singapore(config)#interface serial 0
Singapore(config-if)#ip address 192.168.10.137 255.255.255.252
KualaLumpur(config)#interface serial 1
KualaLumpur(config-if)#ip address 192.168.10.138 255.255.255.252


  23.2  RIP Version 2 
  23.2.1  RIP history   
 
This page will explain the functions and limitations of RIP. The Internet is a collection of autonomous systems (AS). Each AS is generally administered by a single entity. Each AS has a routing technology which can differ from other autonomous systems. The routing protocol used within an AS is referred to as an Interior Gateway Protocol (IGP). A separate protocol used to transfer routing information between autonomous systems is referred to as an Exterior Gateway Protocol (EGP). RIP is designed to work as an IGP in a moderate-sized AS. It is not intended for use in more complex environments.

RIP v1 is considered a classful IGP.  RIP v1 is a distance vector protocol that broadcasts the entire routing table to each neighbor router at predetermined intervals. The default interval is 30 seconds. RIP uses hop count as a metric, with 15 as the maximum number of hops.

If the router receives information about a network, and the receiving interface belongs to the same network but is on a different subnet, the router applies the one subnet mask that is configured on the receiving interface:

  • For Class A addresses, the default classful mask is 255.0.0.0.
  • For Class B addresses, the default classful mask is 255.255.0.0.
  • For Class C addresses, the default classful mask is 255.255.255.0.

RIP v1 is a popular routing protocol because virtually all IP routers support it. The popularity of RIP v1 is based on the simplicity and the universal compatibility it demonstrates. RIP v1 is capable of load balancing over as many as six equal-cost paths, with four paths as the default.

RIP v1 has the following limitations:

  • It does not send subnet mask information in its updates.
  • It sends updates as broadcasts on 255.255.255.255.
  • It does not support authentication.
  • It is not able to support VLSM or classless interdomain routing (CIDR).


  23.2  RIP Version 2 
  23.2.2  RIP v2 features   
 
This page will discuss RIP v2, which is an improved version of RIP v1. Both versions of RIP share the following features:

  • It is a distance vector protocol that uses a hop count metric.
  • It uses holddown timers to prevent routing loops – default is 180 seconds.
  • It uses split horizon to prevent routing loops.
  • It uses 16 hops as a metric for infinite distance.
RIP v2 provides prefix routing, which allows it to send out subnet mask information with the route update. Therefore, RIP v2 supports the use of classless routing in which different subnets within the same network can use different subnet masks, as in VLSM.

RIP v2 provides for authentication in its updates. A set of keys can be used on an interface as an authentication check. RIP v2 allows for a choice of the type of authentication to be used in RIP v2 packets. The choice can be either clear text or Message-Digest 5 (MD5) encryption. Clear text is the default. MD5 can be used to authenticate the source of a routing update. MD5 is typically used to encrypt enable secret passwords and it has no known reversal.

RIP v2 multicasts routing updates using the Class D address 224.0.0.9, which provides for better efficiency.

  23.2  RIP Version 2 
  23.2.3  Comparing RIP v1 and v2   
 
This page will provide some more information about how RIP works. It will also describe the differences between RIP v1 and RIP v2. RIP uses distance vector algorithms to determine the direction and distance to any link in the internetwork. If there are multiple paths to a destination, RIP selects the path with the least number of hops. However, because hop count is the only routing metric used by RIP, it does not necessarily select the fastest path to a destination.

RIP v1 allows routers to update their routing tables at programmable intervals. The default interval is 30 seconds. The continual sending of routing updates by RIP v1 means that network traffic builds up quickly.  To prevent a packet from looping infinitely, RIP allows a maximum hop count of 15. If the destination network is more than 15 routers away, the network is considered unreachable and the packet is dropped. This situation creates a scalability issue when routing in large heterogeneous networks. RIP v1 uses split horizon to prevent loops. This means that RIP v1 advertises routes out an interface only if the routes were not learned from updates entering that interface. It uses holddown timers to prevent routing loops. Holddowns ignore any new information about a subnet indicating a poorer metric for a time equal to the holddown timer.

Figure  summarizes the behavior of RIP v1 when used by a router.

RIP v2 is an improved version of RIP v1. It has many of the same features of RIP v1. RIP v2 is also a distance vector protocol that uses hop count, holddown timers, and split horizon. Figure  compares and contrasts RIP v1 and RIP v2. The TTL field in the IP packet forces the packet to be dropped. When the hop count reaches 15 routers, the network is considered unreachable, and the packet is dropped because the router doesn't have a route to the destination network.

The first Lab Activity on this page will show students how to set up and configure RIP on routers. The second Lab Activity will review the basic configuration of routers. The Interactive Media Activity will help students understand the differences between RIP v1 and RIP v2.


  23.2  RIP Version 2 
  23.2.4  Configuring RIP v2   
 
This page will teach students how to configure RIP v2. RIP v2 is a dynamic routing protocol that is configured by naming the routing protocol RIP Version 2, and then assigning IP network numbers without specifying subnet values. This section describes the basic commands used to configure RIP v2 on a Cisco router.

To enable a dynamic routing protocol, the following tasks must be completed:

  • Select a routing protocol, such as RIP v2.
  • Assign the IP network numbers without specifying the subnet values.
  • Assign the network or subnet addresses and the appropriate subnet mask to the interfaces.
RIP v2 uses multicasts to communicate with other routers. The routing metric helps the routers find the best path to each network or subnet.

The router command starts the routing process.  The network command causes the implementation of the following three functions:

  • The routing updates are multicast out an interface.
  • The routing updates are processed if they enter that same interface.
  • The subnet that is directly connected to that interface is advertised.
The network command is required because it allows the routing process to determine which interfaces will participate in the sending and receiving of routing updates. The network command starts up the routing protocol on all interfaces that the router has in the specified network. The network command also allows the router to advertise that network.

The router rip and version 2 commands combined specify RIP v2 as the routing protocol, while the network command identifies a participating attached network.

In this example, the configuration of Router A includes the following:

  • router rip – Enables RIP as the routing protocol
  • version 2 – Identifies version 2 as the version of RIP being used
  • network 172.16.0.0 – Specifies a directly connected network
  • network 10.0.0.0 – Specifies a directly connected network

The interfaces on Router A connected to networks 172.16.0.0 and 10.0.0.0, or their subnets, will send and receive RIP v2 updates. These routing updates allow the router to learn the network topology. Routers B and C have similar RIP configurations but with different network numbers specified.



  23.2  RIP Version 2 
  23.2.5  Verifying RIP v2   
 
The show ip protocols and show ip route commands display information about routing protocols and the routing table.  This page explains how show commands are used to verify a RIP configuration.

The show ip protocols command displays values about routing protocols and routing protocol timer information associated with the router. In the example, the router is configured with RIP and sends updated routing table information every 30 seconds. This interval is configurable. If a router running RIP does not receive an update from another router for 180 seconds or more, the first router marks the routes served by the non-updating router as being invalid. In Figure , the holddown timer is set to 180 seconds. Therefore, an update to a route that was down and is now up could stay in the holddown state until the full 180 seconds have passed.

If there is still no update after 240 seconds the router removes the routing table entries. The router is injecting routes for the networks listed following the Routing for Networks line. The router is receiving routes from the neighboring RIP routers listed following the Routing Information Sources line. The distance default of 120 refers to the administrative distance for a RIP route.

The show ip interface brief command can also be used to list a summary of the information and status of an interface.

The show ip route command displays the contents of the IP routing table.  The routing table contains entries for all known networks and subnetworks, and contains a code that indicates how that information was learned.

Examine the output to see if the routing table is populated with routing information. If entries are missing, routing information is not being exchanged. Use the show running-config or show ip protocols Privileged EXEC commands on the router to check for a possible misconfigured routing protocol.

  23.2  RIP Version 2 
  23.2.6  Troubleshooting RIP v2   
 
This page explains the use of the debug ip rip command.

Use the debug ip rip command to display RIP routing updates as they are sent and received.  The no debug all or undebug all commands will turn off all debugging.

The example shows that the router being debugged has received updates from one router at source address 10.1.1.2.  The router at source address 10.1.1.2 sent information about two destinations in the routing table update. The router being debugged also sent updates, in both cases to the multicast address 224.0.0.9 as the destination. The number in parentheses is the source address encapsulated into the IP header.

Other outputs sometimes seen from the debug ip rip command includes entries such as the following:

RIP: broadcasting general request on Ethernet0
RIP: broadcasting general request on Ethernet1
These outputs appear at startup or when an event occurs such as an interface transition or a user manually clears the routing table.

An entry, such as the following, is most likely caused by a malformed packet from the transmitter:

RIP: bad version 128 from 160.89.80.43
Examples of debug ip rip outputs and meanings are shown in Figure .


  23.2  RIP Version 2 
  23.2.7  Default routes   
 
This page will describe default routes and explain how they are configured.
By default, routers learn paths to destinations three different ways:

  • Static routes – The system administrator manually defines the static routes as the next hop to a destination. Static routes are useful for security and traffic reduction, as no other route is known.
  • Default routes – The system administrator also manually defines default routes as the path to take when there is no known route to the destination. Default routes keep routing tables shorter. When an entry for a destination network does not exist in a routing table, the packet is sent to the default network.
  • Dynamic routes – Dynamic routing means that the router learns of paths to destinations by receiving periodic updates from other routers.
In Figure , the static route is indicated by the following command:

Router(config)#ip route 172.16.1.0 255.255.255.0 17.16.2.1
The ip default-network command establishes a default route in networks using dynamic routing protocols:

Router(config)#ip default-network 192.168.20.0
Generally after the routing table has been set to handle all the networks that must be configured, it is often useful to ensure that all other packets go to a specific location. This is called the default route for the router. One example is a router that connects to the Internet. All the packets that are not defined in the routing table will go to the nominated interface of the default router.

The ip default-network command is usually configured on the routers that connect to a router with a static default route. 

In Figure , Hong Kong 2 and Hong Kong 3 would use Hong Kong 4 as the default gateway. Hong Kong 4 would use interface 192.168.19.2 as its default gateway. Hong Kong 1 would route packets to the Internet for all internal hosts. To allow Hong Kong 1 to route these packets it is necessary to configure a default route as:

HongKong1(config)#ip route 0.0.0.0 0.0.0.0 s0/0
The zeros in the IP address and mask portions of the command represent any destination network with any mask. Default routes are referred to as quad zero routes. In the diagram, the only way Hong Kong 1 can go to the Internet is through interface s0/0.


Summary

   
This page summarizes the topics discussed in this module.

Variable-Length Subnet Masks (VLSM), often referred to as "subnetting a subnet", is used to maximize addressing efficiency. It is a feature that allows a single autonomous system to have networks with different subnet masks. The network administrator is able to use a long mask on networks with few hosts, and a short mask on subnets with many hosts. 

It is important to design an addressing scheme that allows for growth and does not involve wasting addresses. To apply VLSM to the addressing problem, large subnets are created for addressing LANs. Very small subnets are created for WAN links and other special cases.

VLSM helps to manage IP addresses. VLSM allows for the setting of a subnet mask that suits the link or the segment requirements. A subnet mask should satisfy the requirements of a LAN with one subnet mask and the requirements of a point-to-point WAN with another.

Addresses are assigned in a hierarchical fashion so that summarized addresses will share the same high-order bits. There are specific rules for a router. It must know in detail the subnet numbers attached to it and it does not need to tell other routers about each individual subnet if the router can send an aggregate route for a set of routers. A router using aggregate routes would have fewer entries in its routing tables.

If VLSM is the scheme chosen, it must then be calculated and configured correctly.

RIP v1 is considered an interior gateway protocol that is classful. RIP v1 is a distance vector protocol that broadcasts its entire routing table to each neighbor router at predetermined intervals. The default interval is 30 seconds. RIP uses hop count as a metric, with 15 as the maximum number of hops.

To enable a dynamic routing protocol, select a routing protocol, such as RIP v2, assign the IP network numbers without specifying the subnet values, and then assign the network or subnet addresses and the appropriate subnet mask to the interfaces. In RIP v2, the router command starts the routing process. The network command causes the implementation of three functions. The routing updates are multicast out an interface, the routing updates are processed if they enter that same interface, and the subnet that is directly connected to that interface is advertised. The version 2 command enables RIP v2.


The show ip protocols command displays values about routing protocols and routing protocol timer information associated with the router. Use the debug ip rip command to display RIP routing updates as they are sent and received. The no debug all or undebug all commands will turn off all debugging.

No comments:

Post a Comment

Turn Pc On Designed by Templateism.com Copyright © 2014

Theme images by Bim. Powered by Blogger.